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Abstract— The exoskeleton is an autonomous robotic device
whose function is to increase the strength and endurance of
a human pilot. In order to achieve an exoskeleton controller
which reacts compliantly to external forces, an accurate model
of the dynamics of the system is required. In this report, a series
of system identification experiments are designed and carried
out for the Berkeley Lower Extremity Exoskeleton. As well as
determining the mass and inertia properties of the segments of
the legs, various non-ideal elements such as friction, stiffness
and damping forces are identified. The resulting dynamic model
is found to be significantly more accurate than the original model
predicted from the designs of the robot.

I. INTRODUCTION

The Berkeley Lower Extremity Exoskeleton (BLEEX) is a
robotic device to be worn by a human in order to augment
the strength and endurance of the wearer. The first generation
model, developed at U.C. Berkeley’s Human Engineering and
Robotics Laboratory, is shown in Fig. 1. The exoskeleton con-
troller is designed to allow a human to move around naturally
wearing the exoskeleton robot, and not feel significant forces
from the device [1]. In order to achieve such compliancy, the
model of the system dynamics needs to be very accurate [2].

The dynamics of the exoskeleton can be predicted theoret-
ically using the simplified model of the robot leg as a three
segment manipulator, with the mass and inertia properties of
the robot links predicted from design models [3]. However,
a large number of factors affecting the dynamics cannot be
predicted from this approach. Many parts of the robot cannot
be modelled accurately, for example, the dynamics of the
hosing and wiring, and the internal dynamics of the actuators.
Additionally, there are many unknown forces acting within
the robot, caused by friction, stiffness and damping of various
elements.

Therefore, the model of the robot must be obtained ex-
perimentally. This report discusses the identification of the
dynamics of a leg of the robot which is not in contact with
the ground. This is called the swing mode of the leg, as
opposed to the stance mode when the foot is touching the
ground. During walking, the motions of a leg while in swing
mode are generally faster and larger than those while in stance
mode. Therefore, it is more important to have compliancy in
the swing mode. For this reason, the system identification was
first performed only for swing mode. However, the system

Fig. 1. The Berkeley Lower Extremity Exoskeleton.

identification methods used for the swing mode dynamics
could be adapted to be used for the stance mode dynamics.

II. EXOSKELETON DYNAMICS

A. Three-Segment Model

The exoskeleton comprises two robotic legs attached to a
torso. For the purposes of this investigation, the two legs have
three degrees of freedom: a hip joint, a knee joint and an
ankle joint, each of which is actuated by a hydraulic piston
commanded by the controller. The leg is constrained to move
within the sagittal plane.
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Fig. 2. Three segment model of the exoskeleton leg.

Each leg of the exoskeleton can be modelled as a two-
dimensional three-segment manipulator, as described in [3].
A diagram of the simplified model is shown in Fig. 2. The
length of the thigh link is Lt, and the length of the shank link
is Ls. The position of the centre of gravity of the thigh is given
by LGt and hGt , that of the shank by LGs and hGs , and that
of the foot by LGf and hGf , as shown.

The joint angles θ1, θ2 and θ3 are defined as shown in
the diagram. If all joint angles are zero, then the thigh and
shank are vertical and the foot is horizontal. The joint angle
is positive if the angle of the lower link relative to the upper
link is anti-clockwise.

At each joint, there will be a torque acting between the two
links. The torque T1 acts between the torso and the thigh, the
torque T2 acts between the thigh and the shank, and the torque
T3 acts between the shank and the foot. The sign convention is
such that a positive torque Ti will cause a positive acceleration
θ̈i.

The mass of the thigh, shank and foot links are mt, ms and
mf respectively. The moment of inertias of the links about
their centres of gravity are It, Is and If.

B. Ideal Equations of Motion

The derivation of the equations of motion for the sim-
plified model of the exoskeleton leg is discussed in [3].
It is assumed that the only forces acting on the links
are the joint torques, T1, T2 and T3, and gravitational
forces. Then expressions can be found for T1, T2 and T3

in terms of the joint angles, (θ1, θ2, θ3), the joint veloci-
ties, (θ̇1, θ̇2, θ̇3), the joint accelerations, (θ̈1, θ̈2, θ̈3), and the
constant geometry and mass parameters of the three links,
(Lt, Ls, LGt , hGt , LGs , hGs , LGf , hGf ,mt,ms,mf, It, Is, If).

The lengths of the thigh and shank links, Lt and Ls, may
be determined by direct measurement of the distances between
the centres of the joints, so these parameters are known.

The form of the equations in [3] are unsuitable for use in
system identification, as it can be shown that the parameters
appearing in those equations cannot be determined experimen-
tally. The equations will be rewritten here in terms of the
following nine new parameters.

X3 = −mfhGf , (1)

Y3 = mfLGf , (2)

X2 = ms(Ls − LGs) + mfLs, (3)

Y2 = mshGs , (4)

X1 = mt(Lt − LGt) + msLt + mfLt, (5)

Y1 = mthGt , (6)

J3 = If + mf
(
h2

Gf
+ L2

Gf

)
, (7)

J2 = J3 + Is + ms
(
(Ls − LGs)

2 + h2
Gs

)
+ mfL

2
s , (8)

J1 = J2 + It + mt
(
(Lt − LGt)

2 + h2
Gt

)
+ msL

2
t + mfL

2
t . (9)

Then the dynamic equations for the leg in swing mode can
be rewritten in terms of these nine new parameters. The torque
equation for the ankle joint is

T3 =
[
J3 + Ls(X3 cos θ3 − Y3 sin θ3)

+ Lt(X3 cos θ23 − Y3 sin θ23)
]
θ̈1

+
[
J3 + Ls(X3 cos θ3 − Y3 sin θ3)

]
θ̈2

+
[
J3

]
θ̈3

+ Lt(X3 sin θ23 + Y3 cos θ23) θ̇2
1

+ Ls(X3 sin θ3 + Y3 cos θ3) θ̇2
12

+ g(X3 sin θ123 + Y3 cos θ123). (10)

Note that θ12 denotes θ1 + θ2, θ23 denotes θ2 + θ3, and θ123

denotes θ1 + θ2 + θ3. Similarly, θ̇12 denotes θ̇1 + θ̇2, and so
on.

The torque equation for the knee joint is

T2 =
[
J2 + 2Ls(X3 cos θ3 − Y3 sin θ3)
+ Lt(X3 cos θ23 − Y3 sin θ23)

+ Lt(X2 cos θ2 − Y2 sin θ2)
]
θ̈1

+
[
J2 + 2Ls(X3 cos θ3 − Y3 sin θ3)

]
θ̈2

+
[
J3 + Ls(X3 cos θ3 − Y3 sin θ3)

]
θ̈3

+ Lt(X2 sin θ6 + Y2 cos θ6) θ̇2
1

+ Lt(X3 sin θ23 + Y3 cos θ23) θ̇2
1

+ Ls(X3 sin θ3 + Y3 cos θ3)
(
θ̇2
12 − θ̇2

123

)
+ g(X2 sin θ12 + Y2 cos θ12

+ X3 sin θ123 + Y3 cos θ123). (11)
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Finally, the torque equation for the hip joint is

T1 =
[
J1 + 2Ls(X3 cos θ3 − Y3 sin θ3)
+ 2Lt(X3 cos θ23 − Y3 sin θ23)

+ 2Lt(X2 cos θ2 − Y2 sin θ2)
]
θ̈1

+
[
J2 + 2Ls(X3 cos θ3 − Y3 sin θ3)
+ Lt(X3 cos θ23 − Y3 sin θ23)

+ Lt(X2 cos θ2 − Y2 sin θ2)
]
θ̈2

+
[
J3 + Ls(X3 cos θ3 − Y3 sin θ3)

+ Lt(X3 cos θ23 − Y3 sin θ23)
]
θ̈3

+ Lt(X2 sin θ6 + Y2 cos θ6)
(
θ̇2
1 − θ̇2

12

)
+ Lt(X3 sin θ23 + Y3 cos θ23)

(
θ̇2
1 − θ̇2

123

)
+ Ls(X3 sin θ3 + Y3 cos θ3)

(
θ̇2
12 − θ̇2

123

)
+ g(X1 sin θ1 + Y1 cos θ1

+ X2 sin θ12 + Y2 cos θ12

+ X3 sin θ123 + Y3 cos θ123). (12)

It can be shown that these nine parameters, X3, Y3, X2, Y2,
X1, Y1, J3, J2, and J1, are independent and can therefore be
identified via experiment. They are a minimal set of parameters
which fully describe the dynamics of the system.

Note that these equations apply to the case where the torso
is stationary, which is the case for all experiments described in
this report. However, if the dynamic equations are re-derived
for the case when the torso is in motion, they can also be
expressed in terms of only this reduced set of nine parameters.
Therefore, it is still sufficient to identify only these parameters.

C. Friction, Stiffness and Damping

Let Ai denote the torque exerted on the joint by the
hydraulic actuator. An accurate estimate of this torque can
be obtained from the force sensor measurement, and the joint
angle encoder measurement. (The joint angle is required to
calculate the moment arm of the actuator force about the joint.)

There are several other torques acting on the joint. We divide
these into three components: a stiffness torque, a damping and
kinetic friction torque, and a static friction torque. The stiffness
torque, which we denote by Bi, is expected to be a function
only of the joint angle, that is, Bi = bi(θi). The damping and
kinetic friction torque, which we denote by Ci, is expected
to be a function only of the joint angular velocity, that is,
Ci = ci(θ̇i). This torque Ci is zero when θ̇i is zero. Finally,
the static friction torque is denoted by Di.

The total torque exerted on the joint is then given by the
equation

Ti = Ai + Bi + Ci + Di. (13)

D. Parameters for Identification

In order to have an accurate model of the relationship be-
tween the actuator torques and the motion of the exoskeleton,
all terms in the equations above must be characterised.

The following parameters are known:

• the link lengths, Lt, Ls, and
• the gravitational constant, g.

The terms which need to be identified are:

• the mass moment parameters, X3, Y3, X2, Y2, X1, Y1,
• the inertial parameters, J3, J2, J1,
• the stiffness torques, B3, B2, B1 and
• the damping and kinetic friction torques, C3, C2, C1.

The static friction torques, D3, D2, D1, will not be charac-
terised, for reasons described later.

III. PARAMETER IDENTIFICATION

A. Least Squares Estimation

Least squares estimation can be used to identify parameters
in systems, when we have a linear relationship between the
unknown parameters with coefficients which are known func-
tions of measurable quantities [4]–[8]. For example, suppose
we have a system governed by the equation

y(t) = [h(t)]T x. (14)

Here, x is a vector of n constant unknown parameters, y(t)
is the output of the system at time t, and the n coefficients in
the vector h(t) are time-varying and depend upon the state of
the system. However, we can determine h(t) from measurable
quantities.

To estimate the unknown parameters, we take measurements
y(ti) of the system output at m different times or configura-
tions. At each of these times or configurations, we calculate
the the coefficients vector, h(ti). Additionally, some noise
v(ti) is introduced into each measurement, so that y(ti) =
[h(ti)]T x + v(ti). Then, we can write these m equations in
matrix form,

y = Hx + v. (15)

where

y =

⎡
⎢⎢⎢⎣

y(t1)
y(t2)

...
y(tm)

⎤
⎥⎥⎥⎦ , v =

⎡
⎢⎢⎢⎣

v(t1)
v(t2)

...
v(tm)

⎤
⎥⎥⎥⎦ ,

H =

⎡
⎢⎢⎢⎣

[h(t1)]
T

[h(t2)]
T

...
[h(tm)]T

⎤
⎥⎥⎥⎦ . (16)

Then we can find a least squares estimate x̂ using the equation

x̂ =
(
HT H

)−1
HT

y. (17)

B. Experimental Procedure

In this section, the experimental procedures followed in
collecting data for the parameter identification process are
outlined.
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1) Static Experiments: The static experiments are those in
which the joint torques are measured when the exoskeleton is
in a static configuration, so all joint velocities and accelerations
are zero. For each experiment, the exoskeleton is placed on a
jig so that the torso is held in the air at a fixed position and
in vertical orientation. A sequence of configurations is pro-
grammed into the exoskeleton controller. Each configuration
consists of a list of six joint angles, (θ1L , θ2L , θ3L , θ1R , θ2R , θ3R).
When the controller is activated, the six actuators are each
commanded to move the joint to the desired angle, θd.

The voltage sent to the actuators, u, is determined by a
simple proportional controller, u = −KP (θ − θd), where θ
is the joint angle measured by the encoder. After the joints
have stopped moving, the data from each of the force sensors
are collected. The joint angles measured by the encoders are
also recorded. From these values, the torque exerted by the
actuator at each of the six joints is calculated and recorded.

2) Dynamic Experiments: In the dynamic experiments,
the joint torques are measured when the exoskeleton is
in motion. A trajectory of the robot configuration is
programmed into the exoskeleton controller. The trajec-
tory consists of a list of six joint angle trajectories,
(θ1L(t), θ2L(t), θ3L(t), θ1R(t), θ2R(t), θ3R(t)). When the con-
troller is activated, the six actuators are each commanded to
track the desired trajectory, θd(t). As in the static experiments,
a simple proportional controller is used to determine the
voltage sent to the actuators.

The joint encoder and force sensor readings are recorded at
a rate of fs ≈ 50 Hz. At each sample point, the torque exerted
by the actuator at each of the six joints is calculated from the
joint encoder and force sensor readings and recorded.

After the experiment, the joint velocities and accelerations
at each of the sample points (excepting the first and last) are
estimated by finite difference approximations.

C. Static Friction Torques

When a robot leg is moved to a static configuration,
(θ1, θ2, θ3), the actuator torque for each joint depends on
the direction from which the joint angle was reached. This
phenomenon can be observed in the plot shown in Fig. 3.
The hip and knee angles were held constant throughout this
experiment. The ankle was moved cyclically through the
angles {−15◦, 0◦, 15◦, 0◦}. On the actuator torque plot, the
circles represent the torques A+

3 where the angle position, 0◦,
was approached from the negative, and the crosses represent
the torques A−

3 where the angle position was approached from
the positive. It can be seen that the torques A+

3 are consistently
greater than the torques A−

3 .
The discrepancy between A+

i
and A−

i
is due to the static

friction torque, Di. When the joint is moving with positive
velocity (θi increasing), there is a negative kinetic friction
torque to oppose the motion. When the joint comes to rest,
there remains a negative static friction torque. If the joint
comes to rest from the other direction, the static friction torque
will be positive.
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Fig. 3. Effect of the static friction torque in the ankle.

When the robot is walking, no joint will be completely
static. Therefore, the controller does not need to be able to
estimate the static friction torque, so there is no reason to
characterise it. However, in order to obtain accurate results
in the estimation of the other parameters, it is desirable to
reduce the effects of the static friction torques. This can be
achieved by taking each static torque measurement twice,
first approaching the the joint angle θi from the negative
direction, then approaching it from the positive direction. The
two torques obtained, A+

i
and A−

i
, are then averaged to obtain

an estimate of what the actuator torque would be if there were
no static friction torque.

D. Stiffness Torques

When the robot is static (θ̇1 = θ̇2 = θ̇3 = 0 and θ̈1 = θ̈2 =
θ̈3 = 0), the ankle joint torque given by (10) becomes

T3 = g(X3 sin θ123 + Y3 cos θ123). (18)

Also, under static conditions, the damping and kinetic friction
torque, C3, is zero. We eliminate the static friction torque, D3,
by averaging two measurements as discussed in the previous
section. Therefore, from (13), when the robot is static, the
measured torque is

A3 = g(X3 sin θ123 + Y3 cos θ123) − B3. (19)

To identify the ankle stiffness torque, B3, the robot was
controlled to move to a series of positions such that θ123 was
the same at each of the positions, while θ1, θ2 and θ3 were all
varied. Then the term (X3 sin θ123 + Y3 cos θ123) is constant
for the set of positions, so the measured torque is

A3 = −B3 + g(X3 sin θ123 + Y3 cos θ123), (20)

where g(X3 sin θ123 + Y3 cos θ123) is a constant.
The measured torque, A3, was plotted against the ankle joint

angle, θ3. The experiment was repeated for several different
values of θ123. The different data sets were found to have the
same shape, as shown in Fig. 4, supporting the assumption that
B3 is a function only of θ3, so we can write B3 = b3(θ3).
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Fig. 4. Effects of the stiffness torque in the ankle for various values of θ123.

It was found that a quadratic function, b23θ
2
3 + b13θ3 + c,

fit the resulting plots very closely. The parameters b23 and
b13 were determined using a least squares fit. Then our
characterisation of the stiffness function is

b3(θ3) = b23θ
2
3 + b13θ3 + b03. (21)

However, the parameter b03 could not be determined from
the previous data alone, since the constants g(X3 sin θ123 +
Y3 cos θ123) for each value of θ123 were unknown.

In order to find the parameter b03, the robot was controlled
to two positions, (θ1, θ2, θ3) and (θ′1, θ

′
2, θ

′
3), such that θ′1 +

θ′2 = θ1 + θ2 + 180◦ and θ′3 = θ3. The measured torques are

A3 = −b3(θ3) + g(X3 sin θ123 + Y3 cos θ123), (22)

A′
3 = −b3(θ′3) + g(X3 sin θ′123 + Y3 cos θ′123). (23)

Since θ′123 = θ123 + 180◦, it can be shown that

b3(θ3) = −
A3 + A′

3

2
. (24)

Therefore, from these two torque measurements, and using
our previously determined values of b23 and b13, we obtain an
estimate of b03,

b03 = −
A3 + A′

3

2
− b23θ

2
3 − b13θ3. (25)

By taking a large number of pairs of torque measurements of
this kind, and averaging the resulting values of b03, we can
determine b03.

The procedure for identifying the stiffness torque in the knee
joint is very similar. As for the ankle, we find that the knee
actuator torques are dependent only on the knee joint angle,
so B2 = b2(θ2). Our characterisation of the stiffness function
is

b2(θ2) = b22θ
2
2 + b12θ2 + b02, (26)

and the three parameters b22, b12 and b02 are identified.
Finding the stiffness torque in the hip joints is much more

difficult than finding the stiffness torques in the knee and
ankle joints. In principle, a method similar to those used

for the knee and ankle joints could be used, but this would
require experiments with the exoskeleton torso mounted in
many different orientations, so that the hip joint angle would
change while the gravitational torque on the hip remained
constant.

There is no reason that the magnitude of the stiffness torque
in the hip joints should be greater (or smaller) than that in the
knee and ankle joints. However, the total torque in the hip
joint is in general significantly greater in magnitude than that
in the knee and ankle joints. Therefore, the relative impact of
the stiffness torque on the total torque is much less significant
in the hip joint than in the other joints.

For these reasons, the stiffness torque in the hip joints was
not identified. The best estimate without experimental data is
B1 = 0.

E. Mass Moment Parameters

Equation (19) is the ankle torque equation under static
conditions. Substituting in (21) for the ankle stiffness torque
and rearranging yields

g(X3 sin θ123 + Y3 cos θ123)

= A3 + (b23θ
2
3 + b13θ3 + b03). (27)

The robot is controlled to move to a series of 100 static
configurations, and the joint angles and the ankle joint torque
are measured at each one. Then, for each configuration, the
right hand side of (27), A3 + b23θ

2
3 + b13θ3 + b03, is known,

because the parameters b23, b13 and b03 have been identified.
Additionally, on the left hand side, the gravitational constant
g is known, and the values sin θ123 and cos θ123 can be
calculated. Therefore, we can use a least squares fitting to
estimate X3 and Y3 from these measurements.

We can find the knee and hip mass moment parameters in
an identical manner.

F. Inertia Parameters

1) Foot Inertia Parameter: When the ankle and hip joints
are stationary (θ̈1 = θ̈3 = 0, θ̇1 = θ̇3 = 0), then the torque
equation for the ankle joint is

T3 =
[
J3 + Ls(X3 cos θ3 − Y3 sin θ3)

]
θ̈2

+ Ls(X3 sin θ3 + Y3 cos θ3) θ̇2
2

+ g(X3 sin θ123 + Y3 cos θ123). (28)

Neglecting the friction torque, D3, which is small compared
to the total dynamic ankle torque, the left hand side of this
equation is equal to A3 + B3 + C3. We know C3 = 0, since
θ̇3 = 0. Therefore, we have[

J3 + Ls(X3 cos θ3 − Y3 sin θ3)
]
θ̈2

= A3 + B3 − Ls(X3 sin θ3 + Y3 cos θ3) θ̇2
2

− g(X3 sin θ123 + Y3 cos θ123), (29)

where the right hand side of the equation is known, since X3

and Y3 have been identified. The only unknown is the foot
inertia parameter, J3. The coefficient of θ̈2 is a constant, since
the ankle joint angle θ3 is fixed.
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Fig. 5. The inertial component of the ankle joint torque.

To identify the parameter J3, the hip and ankle joints
were controlled to fixed positions, while the knee joint was
controlled to track a sinusoidal input of fixed frequency. The
joint angles and ankle joint torque were recorded. This was
repeated for five different frequencies (0.2 Hz, 0.4 Hz, 0.6 Hz,
0.8 Hz, 1.0 Hz).

A least squares fitting was then used to estimate the value
of [J3 +Ls(X3 cos θ3 −Y3 sin θ3)] from this data. Finally, the
known values of Ls, X3 and Y3, along with the constant value
of θ3 for the experiments, were used to obtain an estimate of
the foot inertia parameter, J3.

A plot of the fit for one of the experiments is shown in
Fig. 5. The solid line shows the right hand side of (29)
calculated from the torque and joint angle measurements. The
dotted line shows the left hand side of (29) calculated using
the the value of J3 obtained from the least squares fitting.
The plots matched well for all of the experiments, verifying
the form of the equation.

2) Shank Inertia Parameter: When the ankle and knee
joints are stationary (θ̈2 = θ̈3 = 0, θ̇2 = θ̇3 = 0), neglecting
the friction torque, D2, we have[

J2 + 2Ls(X3 cos θ3 − Y3 sin θ3)
+Lt(X3 cos θ23 − Y3 sin θ23)

+Lt(X2 cos θ2 − Y2 sin θ2)
]
θ̈1

= A2 + B2 − Lt(X2 sin θ2 + Y2 cos θ2) θ̇2
1

− Lt(X3 sin θ23 + Y3 cos θ23) θ̇2
1

− g(X2 sin θ12 + Y2 cos θ12

+ X3 sin θ123 + Y3 cos θ123), (30)

where the right hand side of the equation is known, since X3,
Y3, X2 and Y2 have been identified. The only unknown is the
shank inertia parameter, J2. The coefficient of θ̈1 is a constant,
since the knee and ankle joint angles θ2 and θ3 are fixed.

To identify the parameter J2, the knee and ankle joints
were controlled to fixed positions, while the hip joint was
controlled to track a sinusoidal input of fixed frequency. The
joint angles and ankle joint torque were recorded. This was

repeated for five different frequencies (0.2 Hz, 0.4 Hz, 0.6 Hz,
0.8 Hz, 1.0 Hz).

A least squares fitting was then used to estimate the value
of [

J2 + 2Ls(X3 cos θ3 − Y3 sin θ3)
+ Lt(X3 cos θ23 − Y3 sin θ23)
+ Lt(X2 cos θ2 − Y2 sin θ2)

]
from this data. Finally, the known values of Ls, Lt, X3, Y3,
X2 and Y2, along with the constant values of θ2 and θ3 for
the experiments, were used to obtain an estimate of the shank
inertia parameter, J2.

The results were verified by plotting the right hand side of
(30) calculated from the torque and joint angle measurements
against the left hand side calculated using the the value of
J2 obtained. Again, the plots matched well for all of the
experiments, verifying the form of the equation.

3) Thigh Inertia Parameter: When the ankle and knee
joints are stationary (θ̈2 = θ̈3 = 0, θ̇2 = θ̇3 = 0), neglecting
both the friction torque, D1, and the damping and kinetic
friction torque C1, we have[

J1 + 2Ls(X3 cos θ3 − Y3 sin θ3)
+2Lt(X3 cos θ23 − Y3 sin θ23)

+2Lt(X2 cos θ2 − Y2 sin θ2)
]
θ̈1

= A1 − g(X1 sin θ1 + Y1 cos θ1

+ X2 sin θ12 + Y2 cos θ12

+ X3 sin θ123 + Y3 cos θ123), (31)

where the right hand side of the equation is known, since
X3, Y3, X2, Y2, X1 and Y1 have been identified. The only
unknown is the thigh inertia parameter, J1. The coefficient of
θ̈1 is a constant, since the joint angles θ2 and θ3 are fixed.

To identify the parameter J1, the ankle and knee joints were
controlled to fixed positions, while the hip joint was controlled
to track a sinusoidal input of fixed frequency. The joint angles
and hip joint torque were recorded. This was repeated for five
different frequencies (0.2 Hz, 0.4 Hz, 0.6 Hz, 0.8 Hz, 1.0 Hz).

A least squares fitting was then used to estimate the value
of [

J1 + 2Ls(X3 cos θ3 − Y3 sin θ3)
+ 2Lt(X3 cos θ23 − Y3 sin θ23)
+ 2Lt(X2 cos θ2 − Y2 sin θ2)

]
from this data. Finally, the known values of Ls, Lt, X3, Y3,
X2 and Y2, along with the constant values of θ2 and θ3 for
the experiments, were used to obtain an estimate of the thigh
inertia parameter, J1.

The results were verified by plotting the right hand side of
(31) calculated from the torque and joint angle measurements
against the left hand side calculated using the the value of
J2 obtained. Again, the plots matched well for all of the
experiments, verifying the form of the equation.
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Fig. 6. The ankle damping and kinetic friction torque, C3.

G. Damping and Kinetic Friction Torques

When the hip and knee joints are stationary (θ̈1 = θ̈2 = 0,
θ̇1 = θ̇2 = 0), then the torque equation for the ankle joint is

T3 =
[
J3

]
θ̈3 + g(X3 sin θ123 + Y3 cos θ123). (32)

If the ankle joint is in motion, then the static friction torque,
D3, is zero. Then the left hand side of this equation is equal
to A3 +B3 +C3. The actuator torque A3 is measured, and the
stiffness torque B3 can be calculated from the joint angle using
the stiffness function b3(θ3) found in Section III-D. Therefore,
the right hand side of the equation

C3 =
[
J3

]
θ̈3 + g(X3 sin θ123 + Y3 cos θ123) − A3 − B3,

(33)

is known. The damping and kinetic friction torque, C3, is
expected to be a function of the joint angular velocity, C3 =
c3(θ̇3).

To find the damping and kinetic friction function, c3(θ̇3),
the hip and knee joints were controlled to fixed positions,
while the ankle joint was controlled to track a sinusoidal input
of fixed frequency. The joint angles and ankle joint torque
were recorded. This was repeated for five different frequencies
(0.2 Hz, 0.4 Hz, 0.6 Hz, 0.8 Hz, 1.0 Hz).

The damping and kinetic friction torque, C3, was calculated
from (33). A plot of C3 against the joint angular velocity, θ̇3,
for one of the experiments is shown in Fig. 6.

It can be seen that the torque C3 is approximately propor-
tional to sgn θ̇3. The same result was found in all experiments.
This shows that there is very little damping torque, which
would be approximately proportional to θ̇3. There is only a
kinetic friction torque, of the form

c3(θ̇3) = c03 sgn θ̇3. (34)

The constant of proportionality, c03, was found using a least
squares fitting to the data from several different frequencies.
(Data points with θ̇3 close to 0 were discarded, due to the
discontinuity in sgn θ̇3.)

The procedure for identifying the damping and kinetic
friction torque in the knee joint is very similar. As for the

ankle, we find that there is very little damping torque, but
only a kinetic friction torque of the form

c2(θ̇2) = c02 sgn θ̇2, (35)

and the constant of proportionality, c02, is identified.
However, the damping and kinetic friction torque in the hip

joint was unable to be identified using the same method as
was used to determine those in the ankle and knee joints, due
to the larger errors in the identification of X1, Y1 and J1.

It would be expected that the kinetic friction torques in the
hip are the same order of magnitude as those in the knee and
ankle joints. Since the total torque in the hip joint is in general
significantly greater in magnitude than that in the knee and
ankle joints, the relative impact of the kinetic friction torque
on the total torque is much less significant in the hip joint than
in the other joints.

For these reasons, the damping and kinetic friction torque
in the hip joints was not identified. The best estimate without
experimental data is C1 = 0.

IV. ANALYSIS OF RESULTS

A. Summary of Numerical Results

The numerical results of the identification experiments are
presented in Tables I–IV. As discussed, the stiffness torques
and the damping and kinetic friction torques in the hip joints
were not identified. The best estimate of these torques without
experimental data are B1 = 0 and C1 = 0.

The mass moment parameters and inertia parameters can
be compared to the values calculated by SolidWorks from the
design models of the parts. The values are the same for the
left and right legs, since the designs are identical. These are
shown in Table V.

B. Comparison of Models

In order to evaluate the accuracy of the system model
obtained from the system identification results, the exoskeleton
was controlled to move each of its joints in a sinusoidal tra-
jectory. The six actuator torques, Ai, were both measured via

TABLE I

STIFFNESS TORQUES

Left leg
B3 = (0.3129 N·m/rad2) θ2

3 + (0.1557 N·m/rad) θ3 + (−0.5829 N·m)

B2 = (0.6263 N·m/rad2) θ2
2 + (1.9334 N·m/rad) θ2 + (0.5 N·m)

Right leg
B3 = (−1.5341 N·m/rad2) θ2

3 + (2.1484 N·m/rad) θ3 + (4.5771 N·m)

B2 = (1.2573 N·m/rad2) θ2
2 + (2.2442 N·m/rad) θ2 + (−1.0 N·m)

TABLE II

MASS MOMENT PARAMETERS

Left leg Right leg
X3 =0.2552 kg·m X3 =0.2554 kg·m
Y3 =0.1313 kg·m Y3 =0.1279 kg·m
X2 =1.9628 kg·m X2 =1.9532 kg·m
Y2 =0.0031 kg·m Y2 =−0.0386 kg·m
X1 =3.9819 kg·m X1 =4.0474 kg·m
Y1 =−0.4083 kg·m Y1 =−0.4990 kg·m
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TABLE III

INERTIA PARAMETERS

Left leg Right leg
J3 =0.04528 kg·m2 J3 =0.05243 kg·m2

J2 =0.7833 kg·m2 J2 =0.7897 kg·m2

J1 =2.380 kg·m2 J1 =2.598 kg·m2

TABLE IV

KINETIC FRICTION TORQUES

Left leg Right leg
C3 =−(0.2646 N·m) sgn θ̇3 C3 =−(0.3370 N·m) sgn θ̇3

C2 =−(0.5291 N·m) sgn θ̇2 C2 =−(0.4081 N·m) sgn θ̇2

TABLE V

SOLIDWORKS PARAMETERS

X3 =0.2793 kg·m X2 =2.055 kg·m X1 =3.783 kg·m
Y3 =0.1546 kg·m Y2 =0.05778 kg·m Y1 =−0.1601 kg·m
J3 =0.05628 kg·m2 J2 =0.8939 kg·m2 J1 =2.497 kg·m2

the force sensors, and estimated from the identified parameters
and functions identified experimentally.

The estimates of the actuator torques calculated from the
system identification results were compared to the actual
measured actuator torques. One set of results is shown in the
dark black lines of Fig. 7. It can be seen that the calculated
actuator torques closely match the measured actuator torques.
Therefore, the results of the system identification provide a
good model of the dynamics.

The light grey lines in Fig. 7 show the estimates of the
actuator torques calculated from the model based on the
SolidWorks designs of the exoskeleton. It can be seen that,
in general, this model is significantly less accurate than the
results using the system identification based model.

V. CONCLUSIONS

A series of system identification experiments were designed
and carried out for the lower extremity exoskeleton robot.
The results of the identification process produced an accurate
model of the dynamics of the exoskeleton legs. This model
was compared to the simplistic model predicted from the robot
designs, and was found to be much more accurate.
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